Computational modeling of electro-elasto-capillary phenomena in dielectric elastomers

نویسندگان

  • Saman Seifi
  • Harold S. Park
چکیده

We present a new finite deformation, dynamic finite element model that incorporates surface tension to capture elastocapillary effects on the electromechanical deformation of dielectric elastomers. We demonstrate the significant effect that surface tension can have on the deformation of dielectric elastomers through three numerical examples: (1) surface tension effects on the deformation of single finite elements with homogeneous boundary conditions; (2) surface tension effects on instabilities in constrained dielectric elastomer films, and (3) surface tension effects on bursting drops in solid dielectrics. Generally, we find that surface tension creates a barrier to instability nucleation. Specifically, we find in agreement with recent experimental studies of constrained dielectric elastomer films a transition in the surface instability mechanism depending on the elastocapillary length. The present results indicate that the proposed methodology may be beneficial in studying the electromechanical deformation and instabilities for dielectric elastomers in the presence of surface tension. © 2016 Elsevier Ltd. All rights reserved. t 2 D M i a V Z t u e W f s a t t S l s fi

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of elasto-capillary phenomena.

Surface energy is an important factor in the deformation of fluids but is typically a minimal or negligible effect in solids. However, when a solid is soft and its characteristic dimension is small, forces due to surface energy can become important and induce significant elastic deformation. The interplay between surface energy and elasticity can lead to interesting elasto-capillary phenomena. ...

متن کامل

Influence of piezoelectricity on the photorefractive effect

We demonstrate that the spatially modulated electric field that is associated with a photorefractive grating generates stress and strain components with symmetries that are different from those induced by a uniform electric field. Therefore, because of piezoelectricity and the elasto-optic effect, the symmetries of the effective dielectric and electro-optic constants to be used to describe the ...

متن کامل

Electro-elastocapillary Rayleigh-plateau instability in dielectric elastomer films.

We demonstrate, using both finite element simulations and a linear stability analysis, the emergence of an electro-elastocapillary Rayleigh-plateau instability in dielectric elastomer (DE) films under 2D, plane strain conditions. When subject to an electric field, the DEs exhibit a buckling instability for small elastocapillary numbers. For larger elastocapillary numbers, the DEs instead exhibi...

متن کامل

The Temperature-Dependent Viscoelastic Behavior of Dielectric Elastomers

In this paper, we investigated the temperature-dependent viscoelastic behavior of dielectric elastomers (DEs) and the effects of viscoelasticity on the electro-actuation behavior. We performed dynamic thermomechanical analysis to measure the master curve of the stress relaxation function and the temperature dependence of the relaxation time of VHB 4905, a commonly used DE. The master curve was ...

متن کامل

Biorthogonal wavelet-based full-approximation schemes for the numerical solution of elasto-hydrodynamic lubrication problems

Biorthogonal wavelet-based full-approximation schemes are introduced in this paper for the numerical solution of elasto-hydrodynamic lubrication line and point contact problems. The proposed methods give higher accuracy in terms of better convergence with low computational time, which have been demonstrated through the illustrative problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016